Extensions 1→N→G→Q→1 with N=C2 and Q=C22×Dic7

Direct product G=N×Q with N=C2 and Q=C22×Dic7
dρLabelID
C23×Dic7224C2^3xDic7224,187


Non-split extensions G=N.Q with N=C2 and Q=C22×Dic7
extensionφ:Q→Aut NdρLabelID
C2.1(C22×Dic7) = C22×C7⋊C8central extension (φ=1)224C2.1(C2^2xDic7)224,115
C2.2(C22×Dic7) = C2×C4×Dic7central extension (φ=1)224C2.2(C2^2xDic7)224,117
C2.3(C22×Dic7) = C2×C4.Dic7central stem extension (φ=1)112C2.3(C2^2xDic7)224,116
C2.4(C22×Dic7) = C2×C4⋊Dic7central stem extension (φ=1)224C2.4(C2^2xDic7)224,120
C2.5(C22×Dic7) = C23.21D14central stem extension (φ=1)112C2.5(C2^2xDic7)224,121
C2.6(C22×Dic7) = D4×Dic7central stem extension (φ=1)112C2.6(C2^2xDic7)224,129
C2.7(C22×Dic7) = Q8×Dic7central stem extension (φ=1)224C2.7(C2^2xDic7)224,140
C2.8(C22×Dic7) = Q8.Dic7central stem extension (φ=1)1124C2.8(C2^2xDic7)224,143
C2.9(C22×Dic7) = C2×C23.D7central stem extension (φ=1)112C2.9(C2^2xDic7)224,147

׿
×
𝔽